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Abstract: We know that most of the numerical methods for solving ordinary differential equations (ODEs) are 
based on iterative techniques or Taylor expansion techniques. In this paper, take three-point boundary value 
problems (BVPs) of linear second-order ODEs for example, we try to study the numerical solutions of ODEs 
from a new perspectiveł-machine learning. By means of the idea of least squares support vector regression 
(LSSVR), we propose a new numerical solving method for three-point BVPs of linear second-order ODEs. 
From the derivative process of the proposed method, we can see that it has generality and can be used for 
solving some other kinds of ODEs. In order to verify the effectiveness of the proposed method, we perform a 
series of comparative experiments with four specific linear second-order ODEs. Experimental results show that 
the proposed method is a effective menthod.  
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1 Introduction 

ODEs can be found in a wide aspect, for example 
in mathematical formulation and physical 
phenomena extraordinary in science and 
engineering. Depending on the orders of ODEs, they 
can be divided into three main categories: first-
order, second-order and higher-order ODEs. Exact 
solutions for ODEs are not generally available and 
hence numerical methods must be considered. 
Multi-point boundary value problems for ODEs can 
arise in solving linear partial differential equations 
by using the steparation variable method [1]. 
Moreover, in the engineering problem to increase 
the stability of a rod, one also imposes a fixed 
interior point except for the ends of the rod [2]. 
Along this line, the solutions of multi point 
boundary value problems for ordinary differential 
equations have great significance in mathematical 
theory and practical applications [3-5]. It is seen that 
the three-point boundary value problems for 
nonlinear second-order ordinary differential 
equations have attractef much attention [6-10]. 

As shown in past works, the solution of solving 
differential equations are almost based on iterative 
methods or Taylor expansion methods, and now we 
focused on a new method which based on LS-SVR. 
However, from the viewpoint of practical 
applications, the explicit solutions or approximate 
solutions of three-point BVPs must be given, so that 
we can have a compare between them. In this paper, 

we hope to study a class of three-point BVPs of 
linear second-order ODEs from a new perspective. 
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where the known functions ],[)( 1 baCxp ∈ , 

],[)(),( baCxgxq ∈ , µλ  , are the constants. Here we 
just discuss the second condition. 

Based on optimization modelings we have least 
square support vector regressions (LS-SVRs) and 
it’s a powerful method for solving pattern 
recognition and function estimation problems which 
based on Vapnik and Chervonenkis structural risk 
minimization principle [11]. But, I think they show 
a better generalization ability compared to other 
machine methods on a wide variety of real-world 
problems, such as optimal control [12], time series 
prediction [13], image segmentation [14] and so on. 
In this method one maps data into a high 
dimensional feature space by means of a kernel 
function and then solves linear regression problems, 
which results in solving quadratic programming 
problems (QPPs). The main challenge in developing 
a useful regression modeling is to capture accurately 
the underlying functional relationship between the 
given inputs and their output values. It can be used 
as a tool for analysis, simulation and prediction, 
once the resulting model is obtained. 
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For a given set of data points and a kernel 
function, LS-SVR aims at determining a regressor 
where the input data are taken into a higher 
dimensional feature space. The basic idea of kernel 
LS-SVR with ε -insensitive loss function proposed 
by Vapnik is to find a linear function )(xy  in the 
higher dimensional feature space such that, on the 
one hand, more training samples locate in the ε -
intensive tube between ε−)(xy and ε+)(xy , and 
on the another hand, the function )(xy  is as flat as 
possible, which leads to introduce the regularization 
term. Thus, the structural risk minimization 
principle is implemented. 

In the following, we mainly research how to use 
kernel LS-SVR method to obtain numerical 
solutions of the Eq.(1). For this end, we first briefly 
introduce kernel LS-SVR and some basic concepts 
in Section 2 and then present a new approximation 
method for the solution of Eq.(1) by means of kernel 
LS-SVR in Section 3. In order to verify the 
effectiveness of the presented method, we perform a 
series of comparative experiments with six specific 
linear second-order ODEs in Section 4 and give 
some concluding remarks in Section 5. 

In this paper, we mainly consider the following 
three-point boundary value problems for linear 
second-order ordinary differential equations with 
variable coefficients: 

b),(a,  ,q=)y( +y(b)
 ,p=y(a)

,b],[a tg(t),=q(t)y(t)+(t)p(t)y'+(t)'y'

0

0

∈

∈

µµλ   

(2)

 
where the known functions ],[)( 1 baCtp ∈ , 

],[)(),( baCtgtq ∈ , µλ  , are the constants. Here we 
just discuss the second condition. 
 
 
2 Kernel LS-SVR and Some Concepts 

ODEs can In this section, we briefly recall kernel 
SVR, for details, see [11]. Let l

iii yx 1)},{(T ==   be a 

set of sample data, where n
ix R∈  and R∈iy  are 

input and output of the i -th sample data, 
respectively. Let Rk nn →×RR:  be a Gaussian 
RBF kernel function with the reproducing kernel 
Hilbert space (RKHS) H and the nonlinear feature 
mapping HR: →nφ . The space H is a higher 
dimensional feature space and can be expressed as 
an expended space of the mapped inputs l

iix 1)}({ =φ , 
that is, )}(,),({ 1 lxxspanH φφ = . It is known 

that Hvuvuk 〉〈= ))(,(),( φφ  for all nvu R, ∈ , 

where H⋅〉〈⋅,  denotes the inner product in RKBS H. 
Let ll

ii Ryxk ×∈= )],([K  be the kernel matrix and 

iK  denote the i-th column of K. LS-SVR is based 
on the ε -insensitive loss function defined by 





≤
≤

=
，otherwise ,y-f(x)

,y-f(x) ,0
ε

ε
εL

 
 Where )(xf  and y  are the predicted value and the 
true value of the input nx R∈ , respectively. The 
regression function obtained by using kernel-based 
LS-SVR has the form bxwxf T += )()( φ , where 
unknown the normal vector w  and bias b can be got 
by solving the following optimization problem: 
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where 0>C is a pre-specified value. 
Since )}(,),({ 1 lxxspanH φφ = , we can set 

)(
1 i

l

i i xw φβ∑ =
= . Put T

l ),,( 1 βββ = , 
T

lyyy ),,( 1 = , lT
l Re ∈= )1,,1(  , then 

βφ T
ii

T Kxw =)(  and the problem (2) can be 
expressed the matrix form 

 )(      
   ..

2
1  min

ll

ll

T

ebeKy
eybeKts

K

εβ
εβ

ββ
β

≤+−
≤−+

  

(4) 

By solving the Wolfe dual form of the problem (4) 
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we can obtain the optimal Lagrange multipliers 
∗∗
21 ,αα and then ∗∗ −= 21
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If we denote the i-th column of the matrix m

nK  by 
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3 Approximate Solutions based on 
Kernel LS-SVR 

In this section, we mainly study how to find 
numerical solutions of the Eq.(1) by using LS-SVR. 
Specifically, we assume that the numerical solution 
of the Eq.(1) has the form bxwxf T += )()(ˆ φ  and 
wish that the unknown Hw∈  and Rb∈  can be 
learned by LS-SVR. For this purpose, we first 
discrete the domain ],[ ba  of the Eq.(1) into a set of 
collocation points bxxxa l =<<<= 21  with 

the same stepsize
1−

−
=

l
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we can let )(

1 j
l

j j tw φβ∑ =
= . 

In order to insure the values 
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we consider the following optimization problem: 
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where 0>C  is a pre-specified value and iξ are 
slack variables. According to (6), we have 
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then the problem (6) can be translated into the 
matrix form: 
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By means of the constraint βTKpb 10 −=  and let 
TT qKMS 1−= , gqph −= 0 , 1)1( KKKt ln λλ +−+=
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Considering the Lagrange function of the problem 
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)(1 thCSSCSK TT αββ ++−= − . Without loss of 
generality, we can assume that K  is a nonsingular 
matrix. Otherwise, since K  is a symmetric 
nonnegative definite matrix, we can regularize 
K by replacing lIK δ+  into K , where 0>δ   is a 
sufficiently small number and lI  denotes the l  
order unit matrix. Substituting β  into the Lagrange 
function, we can get 
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So, if the RBF kernel function is chosen in 
experiment we can have the approximate solution 
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4 Numerical Examples 
In order to demonstrate the effectiveness of the 
proposed method, in this section, we perform a 
series of comparative experiments between 
numerical solutions and exact solutions in the 
following four elaborated three-point BVPs of linear 
second-order ODEs with variable coefficients. The 
RBF kernel function is chosen in experiment. In 
order to demonstrate the effectiveness of the 
proposed method, in this section, we consider four 
integral equations and their analytic solutions and 
listed them in following tables. There have exact 
solution xe−  in (1)-(3), xe  in (4). 

Example 1. Consider a three-point BVP of linear 
second-order ODE with variable coefficients: 
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Example 2. Consider a three-point BVP of linear 
second-order ODE with variable coefficients: 
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Example 3.Consider a three-point BVP of linear 
second-order ODE with variable coefficients: 





+=+=
≤≤−−=−′+′′

−−

−

.)21()1( ,1)0(
1,x0 ,)1()()()(

2/11

22

ee
exxxxxxx x

ϕϕϕ
ϕϕϕ

Example 4.Consider a three-point BVP of linear 
second-order ODE with variable coefficients: 
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From these results, it can be seen that the largest 
absolute errors are not beyond 4-10  magnitude 
order, which show that the proposed algorithm 
could reach a quite agreeable accuracy. There for we 
can conclude that the proposed method is feasible in 
solving linear second-order ODE with three-point 
boundary value problems for with LS-SVR. 

Table 1: Comparison for Example 1 

x Exact 
solution 

Numerical 
solution 

Absolute 
error 

0 1.0000 1.0000 0 
0.1 0.9048 0.9141 0.0092 
0.2 0.8187 0.8262 0.0075 
0.3 0.7403 0.7394 0.0014 
0.4 0.6703 0.6565 0.0139 
0.5 0.6065 0.5806 0.0260 
0.6 0.5488 0.5146 0.0343 
0.7 0.4966 0.4611 0.0355 
0.8 0.4493 0.4222 0.0271 
0.9 0.4066 0.3995 0.0070 

1 0.3679 0.3939 0.0260 

Table 2: Comparison for Example 2 

x Exact 
solution 

Numerical 
solution 

Absolute 
error 

0 1.0000 1.0000 0 
0.1 0.9048 0.9088 0.0040 
0.2 0.8187 0.8237 0.0050 
0.3 0.7403 0.7448 0.0040 
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0.4 0.6703 0.6721 0.0018 
0.5 0.6065 0.6057 0.0009 
0.6 0.5488 0.5455 0.0033 
0.7 0.4966 0.4917 0.0048 
0.8 0.4493 0.4443 0.0050 
0.9 0.4066 0.4033 0.0032 

1 0.3679 0.3688 0.0009 

Table 3: Comparison for Example 3 

x Exact 
solution 

Numerical 
solution 

Absolute 
error 

0 1.0000 1.0000 0 
0.1 0.9048 0.9054 0.0006 
0.2 0.8187 0.8179 0.0009 
0.3 0.7403 0.7375 0.0034 
0.4 0.6703 0.6642 0.0061 
0.5 0.6065 0.5981 0.0084 
0.6 0.5488 0.5392 0.0096 
0.7 0.4966 0.4876 0.0090 
0.8 0.4493 0.4432 0.0061 
0.9 0.4066 0.4061 0.0005 

1 0.3679 0.3763 0.0084 

Table 4: Comparison for Example 4 

x Exact 
solution 

Numerical 
solution 

Absolute 
error 

0 1.0000 1.0000 0 
0.1 1.1052 1.0961 0.0091 
0.2 1.2214 1.2101 0.0113 
0.3 1.3499 1.3418 0.0081 
0.4 1.4918 1.4906 0.0012 
0.5 1.6487 1.6560 0.0073 
0.6 1.8221 1.8375 0.0154 
0.7 2.0138 2.0345 0.0207 
0.8 2.2255 2.2461 0.0206 
0.9 2.4596 2.4719 0.0123 

1 2.7183 2.7110 0.0073 
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Fig.1 Comparison for Example 1 
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Fig.2 Comparison for Example 2 
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Fig.3 Comparison for Example 3 
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Fig.4 Comparison for Example 4 
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4 Conclusion 
In this paper, we try to seek the numerical solutions 
for three-point BVPs of linear second-order ODEs 
with variable coefficients by using optimization 
technology. We know that kernel LS-SVR based on 
optimization modeling is a powerful methodology 
for solving function estimation problems and shows 
better generalization ability than other machine 
learning methods on a wide variety of real-world 
problems. But the main challenge in developing a 
useful regression model is to capture accurately the 
underlying functional relationship between the 
given inputs and their output values. In order to 
construct optimization modeling, we select the 
discrete points of the domain of equation as input 
values and values of the function ))(ˆ( xyL  at the 
discrete points as output values. By solving the 
Wolfe dual problem of the modeling, we propose a 
numerical method. From the experiment results, we 
can see that the proposed method has a good 
approximation property. From the derivation 
process, we can discover that the proposed method 
has a certain versatility and can be used to solve 
some other kinds of differential equations and 
integral equations. 
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